When light reflects from a multilayer dielectric, how deep does it go?

April 21, 2021
Confirmed by experiment, calculations show how deep light goes into a DBR mirror before it reflects; this is relevant for determining microcavity lengths.

At what depth is a multilayer reflective coating actually reflecting the incident light (shown are some dielectric mirrors from Laser Components)? Martin van Exter and Corné Koks of Leiden University (Leiden, Netherlands) have done some calculations to try to more precisely pin this down, as they say that some other recent studies have not correctly modeled the penetration depth and have used incorrect equations. “To tell you the truth, many researchers have been a bit sloppy,” says van Exter. “We have dotted some Is and crossed some Ts.” A multilayer coating serves as a distributed Bragg reflector (DBR), with layers of alternating low and high refractive indices; the two researchers not only did an analysis that involves three different penetration depths (and analyses of DBRs starting with either a low- or high-index layer, called L-DBRs and H-DBRs, respectively), but they also tested their analysis experimentally on microcavities. The conclusion is that there are three different penetration depths, depending on what exactly one would like to measure.

A standing wave of light within a cavity has nodes (where the amplitude is zero) and antinodes (where the amplitude is maximal). The point in the mirror where the node is located was dubbed the phase-penetration depth by van Exter and Koks. For light of one wavelength, the penetration depth is not very deeptypically almost on the surface of the mirror. But a pulse, especially an ultrafast pulse, has a range of frequencies. “When you calculate how fast this pulse returns, and therefore from what depth, the penetration depth turns out to be larger,” says van Exter. “This, we call the frequency-penetration depth.” In addition, the physicists define a third modal-penetration depth, applicable for sharply focused beams of light.

“These are not revolutionary changes,” says van Exter, “but we do show this for the first time, and we note that physicists are often sloppy when calculating their optical setups.” The differences are important for optical microcavities that are only a few microns deep, as the reflection depth helps determine the actual cavity length. Sample experimental measurements made by the researchers include a frequency-penetration depth of 0.28 μm and modal-penetration depth of 0.06 μm, which agreed with their theory. Reference: C. Koks and M. P. van Exter, Opt. Express (2021); https://doi.org/10.1364/oe.412346.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!